Momentum

There are two factors that affect how difficult it is to change an object's motion:

1. The mass of the object.
e.g. catching a rubber ball vs. catching a 16 lb shot
2. The velocity of the object.
e.g. stopping a car moving at $0.25 \mathrm{~m} / \mathrm{s}$ vs. stopping a car moving at $25 \mathrm{~m} / \mathrm{s}$

Newton combined a moving object's mass and its velocity in an expression that he called "quantity of motion." We now call this quantity momentum, and give it the symbol \vec{p}.

The momentum of a moving object is defined as the product of its mass and velocity.

$$
\vec{p}=m \vec{v}
$$

Note: The units of momentum are $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$

Momentum is a vector quantity that has the same direction as the velocity of the object.

Example 1

What is the momentum of a 1000 kg car moving east at $15 \mathrm{~m} / \mathrm{s}$?

Example 2

A baseball of mass 0.145 kg is moving at $25 \mathrm{~m} / \mathrm{s}$.
a. Find the momentum of the baseball.
b. Find the velocity at which a bowling ball, mass 7.26 kg , would have the same momentum.

Homework

Momentum Worksheet \#1

Physics 40S

1. Can a bullet have the same momentum as a truck? Explain.
2. Calculate the momentum of the following objects:
a. a 0.50 kg ball thrown upward with a velocity of $30 \mathrm{~m} / \mathrm{s}(15 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}[U p])$
b. a 2000 kg railway car moving south at $10 \mathrm{~m} / \mathrm{s}\left(2.0 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}[\mathrm{S}]\right)$
c. an electron of mass $9.1 \times 10^{-31} \mathrm{~kg}$, moving at a velocity of $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ ($9.1 \times 10^{-24} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}[$ forward $]$)
d. the Earth, of mass $6.0 \times 10^{24} \mathrm{~kg}$, moving along its solar orbit with a velocity of $3.0 \times 10^{4} \mathrm{~m} / \mathrm{s}\left(1.8 \times 10^{29} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}[\right.$ forward $\left.]\right)$
3. What is the momentum of a 1500 kg Mercedes-Benz 300E traveling east at $115.0 \mathrm{~km} / \mathrm{h}$? ($4.79 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ [East $]$)
4. The momentum of a 7.3 kg shot is $22 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ [forward]. What is its velocity? ($3.0 \mathrm{~m} / \mathrm{s}$ [forward])
5. A bullet traveling at $900 \mathrm{~m} / \mathrm{s}$ has a momentum of $4.5 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. What is its mass? (0.0050 kg or 5.0 g)
6. What is the speed of an 1800 kg car with a momentum of $3.0 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} ?(16.7 \mathrm{~m} / \mathrm{s})$
7. (a) What is the magnitude of the momentum of a 109 kg football player running at a top speed of $9.86 \mathrm{~m} / \mathrm{s}$? (b) What is the magnitude of the momentum of a 9.72 g rifle bullet travelling at $728 \mathrm{~m} / \mathrm{s} ?\left(1.07 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}, 7.08 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)$
8. Jenny has a mass of 35.6 kg and her skateboard has a mass of 1.3 kg . What is the momentum of Jenny and her skateboard together if they are going $9.50 \mathrm{~m} / \mathrm{s}$? ($350.55 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$)
9. Which is greater, the momentum of a 1645 kg Cadillac DeVille traveling at $32 \mathrm{~km} / \mathrm{h}$ or a 1061 kg Mazda Miata traveling at $47 \mathrm{~km} / \mathrm{h}$? (Cadillac)
10. A 1.73 kg physics book flies through the air with a momentum of $18.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. What is its speed? $(10.9 \mathrm{~m} / \mathrm{s})$
11. How many times greater is the momentum of a 230000 kg jet airplane flying at $960 \mathrm{~km} / \mathrm{h}$ than a 1.1 kg pitching horseshoe moving at $11.3 \mathrm{~m} / \mathrm{s} ?\left(4.9 \times 10^{6}\right)$
12. The momentum of an object traveling at $5.3 \mathrm{~m} / \mathrm{s}$ is determined to be $350 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. Could the moving object be an automobile? Explain.
13. A detector of subatomic particles measures the momentum of a particle directly, without the mass being known. In one experiment, the particle's momentum was determined to be $1.82 \times 10^{-26} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. (a) What was the particle's speed if it was an electron? (b) What was the particle's speed if it was a proton? $\left(2.0 \times 10^{4} \mathrm{~m} / \mathrm{s}, 10.9 \mathrm{~m} / \mathrm{s}\right)$
Note:
Mass of an Electron

$$
m_{e}=9.11 \times 10^{-31} \mathrm{~kg}
$$

Mass of a Proton

$$
m_{p}=1.67 \times 10^{-27} \mathrm{~kg}
$$

